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INTRODUCTION

Recently the problem of uniform approximation of e- x on [0, (0) by
rational functions has received much attention. One main motivation was
given by the fundamental paper [3] of Cody et al., where the application to
the construction of numerical procedures for initial value problems was
considered. Besides the special questions arising from this application, the
asymptotic behaviour of the approximation error has been considered [I, 7,
8, 11, 13, 14]. To our knowledge the best rate of approximation so far has
been obtained in [11] using an appropriate translation of a Pade
approximation (a still better rate was announced in [6] using Laguerre
Pade-approximation, however, the proof is incorrect and incomplete).

Here we introduce as a new aspect the question whether the rate of
approximation can be improved by using piecewise Pade-approximation (the
total number of parameters remaining unchanged). We show that this rate
indeed improves significantly. The thorough analysis of the local error of
Pade-approximation constitutes the main part of our work, thereby extending
and sharpening the results of [8] and [11] for the error on [0, (0). This was
made possible by the special form of the Pade-approximation of e- x but
from our result a similar improvement of the rate of approximation may also
be expected in the case of best rational approximation.

1. POINTWISE ERROR ESTIMATES

It is well known (e.g., [10]) that the (m, n) Pade-approximation of eX has
the form

R x =f~tn(t+x)me-tdt
m,n() f~ tm(t - xt e- t dt'
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(1.1 )
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From this it follows directly that

We introduce now the following functions (m <n)

(1.2)

where

J(t) := e- X
'l t(1 - t)',

X' := xln,

get) := e- x 'l(1 + t) t r

r:= min.

(1.3)

(1.4 )

Then a simple calculation yields by (1.2) for x> °
(1.5)

The investigation of this error is done by Laplace's method or "methode du
col" according to which the values of the integrals in (1.4) are determined
essentially by the maxima-of their integrands. This is carried out in detail to
show that the method yields very precise estimates (exact up to a factor of
order n3 log n) in a simple manner. To our knowledge such estimates do not
exist in literature (however, see [4, 6.3.3 D.

THEOREM 1. For all x >0, n? 2 and r = min E (0, 1] there holds

Cnx (X)n -x 8enx (X)n----E -, r <Ie -Rrn n(-x)1 < E -, r
x+n+m n 'x+n+m n

with the constant C= [3e(n + 1)(1 + 2n)210g (1 + 2n)t 1
• The quantity

E(y, r) is defined by

._ h _ y P- h (h +q ) r
E(y, r) .- e p + h h _ q

via the abbreviating notations

(1.6)

p := p(y, r) := y + 1 + r, q := q(y, r) := y - 1 - r

h:= hey, r):= J p 2- 4y = J q2+4ry. (1.7)

Proof By direct calculation we find that (with y = x' in (1.7))

x't* = pl2 - Jp2/4 - x'

x'!' = -q12 + Jq2/4 + rx'

(1.8)

(1.9)
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determine the points t* and ( of the maxima of the functions f(t) and g(t),
respectively. We show then for the numerator in (1.5) that

t*f(t*)n JI----'-...:.........c_,,;;; f(ty dt ,,;;; 4t*f(t*y.
e(n+ 1) 0

To this end we observe that for any a E (0, t*)

(I.l0)

The maximum with respect to a is obtained for a = t*/(n + I) which gives
the left-hand side in (1.10). For the upper estimate we split n= f~' + n, and
use

I 1- t' [ ( t ) ( t) r r
r/(tY dt =f(t*y f

o
e-x't 1+t* 1 - 1 _ t* J dt.

By (1.8) we have t* = (p-x't*)-I. Hence

e-x't (1- I ~t* r";;;exp l-t (XI + I ~t*) ~ =e-
t
/
t
'

and after the substitution u = n + nt/t* we get

I t* nit'

Sf(tYdt";;;-f(t*yf en-u(u/nydu
t' n n

,,;;; t; f(t*)n ( : ) n n!

<J2: e l
/
12nt*f(t*y.

Together with the trivial estimate

t'f f(ty dt";;; t*f(t*Y
o

the right-hand side of (I.l0) now follows.
As to the denominator in (1.5) we show

~ g(t')n ,,;;; foo g(tY dt";;; 3(1 + 2n)210g(1 + 2n) g(t'Y.
ex 0 X

(1.11)
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Here the left-hand side follows similarly as above. For any a >°we have

00 I" +af
o

g(trdt ~r g(tr dt ~ ae-axg(t'r

and maximization with respect to a yields a = Ijx which gives the desired
estimate.

For the proof of the right-hand side of (1.11) we write with b> °
00 (I +b)(I' + ljx) 00

f g(tr dt::(f +f " =-11 +12 ,
o 0 (I +b)(1 + Ijx)

We have

12 = (1 + b) f~ [e~(l+b)x'l(1 +by t r (1 + (I + b) tW dt
1 + l/x

::( (1 + b)l+rn+n e~bx(t'+ l/x) foo g(tr dt.
I' + l/x

The choice b = 2( 1 + 2n) 10g(1 + 2n) yields

for n ~ 2 so that

(1.12)

or (1.13)

Now by (1.9) there holds x't' ::( 1 + r::( 2 and consequently

/ 1 ::( (1 + b)(t' + Ijx)g(t't::( (1 + b)(2n + I)g(t'tjx,

establishing the right-hand side of (1.11) by (1.12) and (1.13).
The theorem now follows from (1.10) and (1.11) taking into account

E(x', r) =f(t*)jg(n and the inequality

x * 2x----::( x't ::( ,
x+n+m x+n+m

which is a consequence of (1.8). I

We remark that the result of Theorem 1 is a more precise statement of the
classical property le- x -Rrn,n(-x)1 = O(lxlm +n +1), Ixl-t 0, of Pade
approximation since one can easily show that E(y, rt = 0(1 y[m+ n), Iyl-t 0,
for fixed r > 0.
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For the following we need the counterpart of Theorem 1 in case x < O. To
this end we assume n to be even since otherwise there is a pole in (1.1). After
replacing x by -x in (1.2), (1.5) a short calculation yields

x n [ex'/t(l - t)T dt eX
Ie -Rm.n(x)l= fgo[e X'/(l-t)tTdt=l+A 1 (1.14)

where

and

tp(s) := e-X'S(l - s) sr, 'I'(s) := e-X'Ss(l +sr,
But tp(s)n, 'I'(s t are equal to f(s)n and g(st, respectively, except for the
interchange of m and n (see (1.3)). Thus A can be estimated in Theorem 1
(cf. (1.1 0), (1.11)) leading to

Cs*x[tp(s*)!'I'(s'W ~ e-xA ~ 4es*x[tp(s*)!'I'(s'W (1.15)

with same constant C. The numbers s* and s' are given by (note the
interchange of m and n)

x's* = pj2 - J p 2j4 - rx '

x's' = -qj2 + J q2j4 +x',

Substitution of these formulas into (1.15) yields

Cs*xF(xjn, rt ~A ~ 4es*xF(xjn, ry

where

- Ii+q (p_li)r
F(y,r)=eh~ P+h '

and

Ii:= Ii(y, r) := J(y - 1 - r)2 + 4y.

Now, using the inequality

rx 2rx
----~X'S*~---
x+n+m x+n+m

(1.16)

(1.17)
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and in (1.14)
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1 I
2min(1,A)~ 1 +A-1 ~min(l,A),

we obtain finally as the counterpart of Theorem 1.

THEOREM 2. For all x> 0, n even and r = min E (0, 1] there holds

2( Cmxe
x

) min(l, F(xln, rt)
x+n+m

~ leX - R rn n(x)1 ~ 8emxe
x

min(l, F(xln, rt)
. x+n+m

where C is defined in Theorem I and F(xln, r) is given by (1.16), (1.17).

2. LOCAL ERROR ESTIMATES

The pointwise error estimates of the preceding section are now used to
derive asymptotically exact error estimates for intervals of the form [0, a],
a> O. The crucial point here is the optimal choice of the parameter r =min
and of a number a E [0, a1by which the Pade-approximation (1.1), (1.2)
may be translated. These questions can be attacked successfully because the
functions E(y, r) and F(y, r) introduced above depend on y, r, respectively,
in a rather simple manner, as the following two lemmas of technical nature
will show.

LEMMA 1. The following assertions are true:

(i) E(y, r) is strictly monotone increasing in y for fixed r E (0, I] if
y < tp(r),

(1 + r)2
tp(r) := 2(1 _ r) (tp(l) := (0), (2.1 )

and strictly monotone decreasing for y > tp(r).

(ii) E(y, r) is strictly monotone increasing in r for fixed y E (0, (0) if
r + 1 <Y and strictly monotone decreasing in r if r + 1 > y.

Proof We only show part (i) in detail. Its proof relies on the formulas
(1.6), (1.7) and the relations between the quantities p, q and h appearing in
them. We have
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-I 0
E(y, r) oy E(y, r)

= h' _ 1 + 1 h ' (1 +h') + r( 1 + h') _ r(h' - 1)
p-h p+h h+q h-q

-h'-1 2(h-ph') 2 (h-h'q)
- + 2 h2 + r h2 2P - -q

= h' - 1 + 2h - h'(p + q) = ~ _ 1
2y y

where we have used the relations p2 - h2= 4y, h2 - q2 = 4ry, p + q = 2y.
The solution of the equation hey, r) = y is then y = qJ(r) given by (2.1).

Part (ii) follows from the relation

a (h+ q )arE(y,r)=E(y,r)ln h-q . (2.2)

Concerning F(y, r) we have the simpler statement of

LEMMA 2. F(y, r) is strictly monotone increasing in y E [0, 00) for fixed
r E (0, 1] and strictly monotone decreasing in r E (0, 1] for fixed y E (0, 00).

(2.3)a (p-ii)-F(y, r) = F(y, r) In ----"'h .
or p +

Lemma 2 is a direct consequence of the following formulas obtained from
(1.16), (1.17):

a ii
-;- F(y, r) = - F(y, r),
uy y

As a first step we derive from Lemma 1 local error estimates for the Pade
approximation (1.2) on [0, a] with r E (0, 1] being fixed.

LEMMA 3. For each a >°and r E (0, 1] there holds

{II e- x
- Rrrnl,n(-x)lloo,ro,aJ! lin ~ min(l, a)lln E(min(a/n, qJ(r)), r).

Here and in the following the symbol ~ stands for equality up to a factor
which is bounded by positive absolute constants from above and below and
which tends to 1 as n ---> 00.

The proof follows immediately from Theorem 1 and Lemma 1, together
with the observation that qJ(r) ;? ~ and the inequalities

1 . (X) X . ( X)-4 mm 1,- ::::;; ::::;;mm 1,-
n x+n+m n

which are a consequence of (1.18).
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Lemma 3 shows that a = q>(r) . n gives the critical length of the interval
[0, a] beyond that the local error is always equal to the global error on
[0, (0). In the latter case an easy calculation yields

L(r) := E(q>(r), r) = 1(2r)' (1 - rf -r. (2.4 )

This function has already been found by Ni et al. [8] in their study of the
global error on [0, (0). It is strictly convex in r E [0, 1] and attains its
minimum at r = 1/3 where L(1/3) = 1/3. Hence we obtain as a corollary of
Lemma 3 one of the main results in [8]:

COROLLARY 1. For r E (0, 1] define

A(r):= lim Ile- x
- R[rn],n(-x)II~~ro,oo)'

n~OO

Then A(r) has a minimum for r = 1/3 with A(1/3) = 1/3.

With the help of Lemma 3 this result can now be extended to any interval
[0, a]. To this end we define for a > 0, n E IN and r E (0, 1]

(2.5)

THEOREM 3. There holds

inf An(a, r)::::; min(l, a lln ) min(1, E(aln, 1)).
lln";;r";;l

Remark. This shows that the optimal choice for r is r = 1 if a ~ ao,
where a o is determined by the equation E(aoln, 1) = 1/3 (a o= n . 1.660605).
In case a > a o the local error and the global error are asymptotically equal
according to Corollary 1. The optimal choice here is r = 1/3,

Proof of Theorem 3. If aln ~ 1/2 we have min(aln, q>(r)) = aln so in
view of the monotonicity property in Lemma 1(ii) the assertion follows
directly from Lemma 3. In the other case we define ra (uniquely) by
aln = q>(ra). Then Lemma l(ii) shows that

inf E(min(aln, q>(r)), r)
l/n<.r( 1

= min( inf E(aln, r); lim L(r))
ra<r<.1 l/n<.r<,ra

= min(min(E«q>(ra), ra); E(aln, 1)); inf L(r)))
l/n<r<.ra

= min(E(aln, 1); inf L(r)).
1/,.",:;:;;r('a
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But since L(r) ~ L(1/3) = 113 and since for aln ~ aoln > 413 there holds
«p(ra) >4/3 or ra > 1/3 we conclude

inf E(min(aln, «p(r», r) = min(E(aln, 1), 1/3)
lin';;;",;; 1

establishing Theorem 3. I
The error estimate of Theorem 3 can still be improved when using an

appropriate translate of the Pade-approximation (1.2), i.e., we consider
instead of (2.5) the (smaller) quantity

Bn(a,r):= inf Ile-x-e-"'R[rnln(-x+a)ll~n[Oal' (2.6)
O<a<a l , •

In order to study its behaviour we need as a counterpart to Lemma 3

LEMMA 4. For each a > 0 and r E (0, 1] there holds

{lleX- R[rnl,n(x)lloo,[o,,,,J!lln ~ [r min(I, a)] l/n e"'ln min(I, F(aln, r)).

The Lemma follows from Theorem 2 and Lemma 2.

THEOREM 4. Let

R:= inf inf max{F(y, r), e-YL(rH
O<r';;;l y>O

and define the junction G(X) jor x > 0 implicitly by

(2.7)

G(x) :={F(z, 1) :F(z, I)=e-XF(x-z, I),O~z~x}. (2,8)

Then

inf Bn(a, r) ~ min(I, a)l/n mineR, G(aln». (2.9)
I/n"r,;;; I

Remark, The number R describing the asymptotic behaviour of the
global error (a= (0) has the value (4.0982107... )-1 and was already
computed by Rahman and Schmeisser [11] by a somewhat different method.
It is attained in (2.7) for the values (cf. [11])

r = r* = 0.4832939... , y = y* = 0.3598078.... (2.10)

In case a <aI' where a1/n = 3.428985... is given by

(2.11 )

the local error is less than the global one and described by the function

640/40(1-7
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G(a/n) showing that the choice r = 1 is then optimal for Pade
approximation.

Proof of Theorem 4. For fixed r and a E [0, a] we have by Lemmas 3
and 4

Ile- x
- e-aR1rnJ,n(-x + a)II~~[O,al

-alnll -Y R ()lll/n= e e - [rnl,n -Y co,l -a,a-al

= e-aln max{11 eY
- R[rnl,n(y)II~7[0,al' II e- Y

- R[rnl,n(-Y)II~7[0,a-ad

~ max{[r min(I, aWln . min(I, F(a/n, r)),

min(I, a - a)l/n e-alnE(min«a - a)/n, <per)), r)}.

From this we get

inf Bn(a, r) ~ min(I, a)l/n . I
lin <;; r<;; I

where

1:= inf inf max {F(a/n, r), e-alnE(min«a - a)/n, <per)), r)}.
lin <;; r<;; I 0<;; a<;;a

(2.12)

(2.13 )

(The upper estimate here is immediate; the lower one requires some
additional arguments showing, e.g., that the cases F(a/n, r) > 1, a >a/2 and
a < min(1, a/IO) do not give the infimum.)

For fixed a >0 we now introduce

11 := inf inf max{F(a', r), e-a'L(r)}
lin <;;r<;;I min(",(r),a')<;;a'-a'<;;a'

12 := inf inf max{F(a', r), e-a'E(a' - a', r)}
I/n<;;r<;;1 O<;;a'-a'<;;min(",(r),a')

(2.14 )

(2.15)

where we put a' := a/n, a' = a/no Then we have 1= min(I(, 12), Now in
(2.15) apart from the case r = 1 we need only consider those a' with
a' - a' >1 + r since otherwise both terms forming the "max" are decreasing
in r so that the infimum is attained for r = 1 again. Also we have then
necessarily r> 1/3 since in case 1 + r > <per) the feasible set in (2.15) is
empty. Thus in view of cp(1) = 00 and

inf max{F(a', 1), e-a'E(a' - a', I)}
O<a'-a'<a'

= inf max{F(a', 1), e-a'F(a' - a', I)} = G(a')
O<,a'-a'<,a'

we find
12 = min(G(a'), inf H(r))

1/3 <;;r<;;I
(2.16)
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(2.18)

where we have introduced (provided that the feasible domain is non-void)

H(r) = H(r, a')

:= inf max{F(a', r), e-a'E(a' - a', r)}. (2.17)
r+ I <a'-a'<min(",(r),a')

Below we shall prove the following crucial

LEMMA 5. If a' ~ 3.6, then on each subinterval [e, d] of
[max(r!, 1/3), 1] the irifimum of H(r) has a value ~min(H(c), G(a'» where
rl = rl(a) E [1/3, II is defined by

F(a' - q>(rl), r l) = e-a'+..(rl)L(rl).

If no such rI exists then we set rI := O.

Now, if 1/3~r~rl in (2.16) we have a'-q>(r»a'-q>(rl»O and
therefore by (2.18) and Lemmas 1 and 2 F(a', r) >e-a'E(a' - a', r) for all
feasible a' in (2.17) which does certainly not give the infimum. Hence we
may assume r ~ max(I/3, rJ in (2.16). But then with the help of Lemma 5
we see that for a' ~ 3.6

12 ~ min(G(a'), H(max(I/3, r l ))) ~ min(G(a'), II)'

Here we have used that by (2.18) H(rl)=max{F(a'-<p(r1),r l ),

e-a'+..(r')L(rl)} ~II as well as H(I/3) = max {F(a' - 4/3,1/3),
e-a '+4/3L(I/3)} ~ II' Hence we have from the foregoing estimate for 12 and
by (2.7)

/ = min(/!, /2) ~ min(/!, G(a'» ~ mineR, G(a'».

On the other hand clearly I ~ min(I!, G(a'».
Now G(x) is monotone increasing in x (this follows directly from the

definition (2.8) by use of e-XF(x z, I)=e-ZE(x-z, 1». Thus
G(a') ~ R ~ II for all a ~ a! ~ 3,6n. In the complementary case a> a l we
have G(a') >R = II since then the numbers r r* = 0.4832939... and
a'=y=0,3598078... from (2.10) satisfy the constraints in (2.14): a' >
3.428985... >a' +q>(r*). Thus the assertion of the theorem is proved. I

Proof of Lemma 5. We treat the case rl = 0 first. Then we must have
F(a' - qJ(I/3), 1/3) <e-a'+"o/3)L(I/3) and so for all feasible a' in (2.17)
by Lemmas 1 and 2

F(a', r) ~ F(a' - 1 - r, r)

~ F(a ' - 4/3, 1/3)

<e-a'+4/3E(4/3, 1/3)

~ e-a'+I+rE(a' - (a ' -1- r), r) ~ e-a'E(a' - a', r).
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H(r) = inf e-a'E(a' ai, r)
r+ l<;;a' -a'<;;min(",(r),a')

= e-a'+l+rE(l + r, r)

which is strictly increasing for r E [1/3, 1], Thus the assertion of Lemma 5
holds.

Now let r 1 ~ 1/3. Let us assume further on that r ~ r2 where r2E [r), II is
defined by

and r2 := I if no such r2 exists. Then for every r E [r 1 , r2] we have F(a', r) ~
(~) e-a'E(a' - a', r) where a' = a' - min(q)(r), a' ) (a' = a' - 1 - r respec
tively). This shows that for any r E [r1' r2 ] there is a unique per) E
[a' - min(q)(r), a'), a' - 1 - r] such that

H(r) = F(f3(r), r) = e-{3(r)E(a' - per), r). (2.20)

From this defining equation and with the help of the formulas in Lemmas 1
and 2 we derive

e-{3(r) oE/or - of/or
p'(r) = of/oy + e-{3(r)E(a' - per), r) + e-{3(r) oE/oy

In((p +h)/(p - Ii» +In«h +q)/(h - q»
=

hfp(r) + h/(a' - p(r»

where (with values for y according to (2.20»

(2.21 )

p := p(r) + 1 + r,

q := a' - per) - 1 - r,

Ii := Vp2 - 4rp(r) = V(f3 - 1 - rf +4p(r)

(2.22)

h := Vq2 + 4r(a' - per»~. (2.23)

An easy calculation using (2.21) shows

sgn H'(r) = sgn la' ~P(r) In (~ ~:) - P(p In (; ~ ~) J' (2.24)

We want to show now that the expression in brackets which we shall denote
by K(r) has at most one zero. For this it will be sufficient to prove that
(f3(r) P)
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d (fJ'h+(a'-fJ)h ' ) (h+ q ) q'h-qh '°> dr K(r) = - h2 In h - q + 2rh

_ (fJ'h-fJh') (P+~)_Ph'-Plh
Iii In p - h 2rh'

93

(2.25)

We need some auxiliary inequalities. In view of r E [r l , r2] we have

1 + r,,;; a' - fJ,,;; lp(r) = (1 + r)2/2(1 - r). (2.26)

Since el +rF(1 + r, r) ~ e413F(4/3, 1) > 1 ~ L(r) ~ E(a ' -fJ, r) = eIJF(fJ, r)
we know further

I + r > fJ =- fJ(r). (2.27)

(2.28)

Now there holds fJ' >°by (2.21) and

fJ' h + (a' - fJ) h'

= (l/h){fJ'[(a' -fJ)(r- I) + (1 + r)2] + (a ' -fJ)(a' -fJ + I + r)f

so that by (2.26) the first term in (2.25) is negative. From (2.26) and (2.27)
it follows that fJ <a I - fJ and hence that

fi2 _ 2(1- r) (~)2
fJ2 - I + fJ + fJ

2(I-r) (l+r)2 h
2

~I- + = 2'
a' -fJ a' -fJ (a ' -fJ)

In view of the inequality In((I +x)/(I - x» ~ 2x for x E [0, I) this implies
by (2.21) that (x =- lijp)

fJ
' In«p + h)/(p - h)) fJ
~ 2h/fJ ~p'

From this estimate and the formula

fJ' h - fJh' = (l/h)[fJ' [p2 - 2fJp + fJ(fJ + I - r)] - fJ(p - 2fJ)}

we see that also the third term in (2.25) is negative. The remaining terms are

q'h - qh'
2rh

phi - p'h

2rh

= _fJ' \ I + r +a' - fJ _ I + r - fJ I
I h

2 Iii \
\ (a ' - fJ)(a' - fJ - I + r) fJ(fJ + I - r)/ (2.29)

- I rh 2 - rlii \
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so that in order to establish (2.25) we only need to show that both terms in
brackets are positive. The second one we can transform to

(a' - fJ)(a' - fJ - 1 + r)
rh 2

fJ(fJ + 1 - r)
rP

1
= rh 2p {i?a'(a' - 2fJ - 1 + r) - fJ(fJ + 1 - r)(h 2 - i?)}.

But because of i?~fJ(fJ+l-r) and h2-i?=a'2-2a'(fJ+l-r)<.
a'(a' - 2fJ - 1 + r) this expression is positive.

For the first term in brackets in (2.29) we have

1 + r +a' - fJ
h2

(1 + r - fJ)
P

a'
= h2P [_fJ2 + fJ[2(1 + r) +a'] + (1 + r)(3 - r - a')].

By (2.27) the function Q(fJ):= _fJ2 +fJ[2(1 + r) +a'] + (1 + r)(3 - r - a')
is strictly monotone increasing for all fJ = fJ(r) of (2.20). Assuming then that

fJ = fJ(r) ~ 0.64r, (2.30)

we see that the term in question is positive if

Q(0.64r) = -0.1296r2+ r(3.28 - 0.36a') + 3 - a' > 0

for all r ~ 1/3. But since Q(0.64r) is monotone increasing for a' <,8 this is
true if Q(0.64/3) ~ -0.0144 + 1.09 + 3 - 1.12a' > 0 which is the case for
a' <. 3.6. Hence under assumption (2.30) we have proved that (2.25) holds.
By (2.24) this means that H(r) is either monotone (decreasing or increasing)
in r or else has only one interior extremum which must be a maximum then.
Hence for a' <. 3.6 and for any subinterval [e, d] c [r 1 , r 2 ]

inf H(r) = min(H(c), H(d)).
c<,r<,d

(2.31 )

In order to prove (2.30) let us assume the contrary. Then (2.20), (2.26)
imply

eO.64rF(0.64r, r) ~ E(a' - fJ(r), r) ~ E(r + 1, 1) (2.32)

for some r E [r), r2]. Then we consider the function (for any fixed b > 0)

'1'(r) := ebrF(br, r)/E(r + 1, r).
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Similarly to the computation of (2.21), (2.24) we get with the help of the
formulas of Lemmas I and 2

eb'F(br r) 1 h p - h h l
'P' (r) = 'b + - + In --- - --+ I

E(r + I, r) r p + h I + r

where, according to the choice of y, we have to set (cf. (2.22), (2.23))

p :=1 + (I +b) r, h=2Jr(r+ I). (2.33)

We shall now show 'P'(r) >0 for b = 0.064. We have

~ Ib + h +In p-~__h_+ II
dr I r p + h I + r I

h-h'(l +r) h'r-h p'h-ph'
= + +'-------:--

(I + r)2 r2 2r2b

With the help of (2.33) we can verify that

[h - h'(1 + r))(1 + r)-Z = -2[h(1 + r)t l <0

and that for bE (0, I)

(hl r-h)2b+p l h-ph' (p-2r) -I+(I-b)r
2r2b = - rzii = rzii < O.

Thus 'P' (r) has at most one zero for any b E (0, I) and will turn from
positive to negative values there. But for b = 0.64

l · b+2-Jbf+4 l
sgn 'P' (1) = sgn b + Jbf+4 + In Jbf+4 - J2 + I

b + 2 + bZ + 4

= sgnI0.15... 1> 0

which shows that 'P'(r) >0 for b = 0.64. Now this implies a contradiction to
(2.32) because

eO. 64'F(0.64r, r) eO. 64F(0,64, I)
max = ---'---,---

1/3<;;'<;1 E(r + I, r) E(2, I)

= 0.9605 ... < 1.

Hence our assumption /l(r) ~ 0.64r in (2.30) is proved. In order to complete
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the proof of Lemma 5 it remains to study H(r) on the interval [r2 , 1] (if it is
non-void). We observe that

H(r) ~ H(r) := inf max {F(a', r), e-a'E(a' - a', r)}.
O<a'-a' <min(",(r).a ')

(2.34)
Then for r~ r1 there is always a feasible per) satisfying

H(r) =F<p(r), r) = e-$(r)E(a' - per), r).

For p'er) and H'(r) there hold the same formulae as in (2.21), (2.24).
However, if rE [r2 , II with r2 < I by (2.19) we must have then per) >
a' 1- r (in contrast to (2.26» whence q < 0 in (2.23). An immediate
consequence of (2.24) is then sgn H' (r) <0 so that by (2.34) for all
rE [r 2 , I]

H(r) ~ H(r) ~ H(I) = G(a ' ).

Together with (2.31) this finally establishes the complete assertion of the
lemma. I

Remark. The proof of Lemma 5 is complicated by the fact (cf. (2.24»
that for H(r) we can only show that it is either monotone or concave.
Indeed, this behaviour is confirmed by numerical results for the critical
values of a.

3. OPTIMAL PIECEWISE PADE-ApPROXIMATION

The local error estimates of the preceding section enable us to achieve the
final goal of this paper, namely, to investigate whether the rate of approx
imation (on [0, 00» can be improved by using piecewise Pade
approximation with equal total number of parameters. We look for the
optimal distribution of the pieces and the degrees of the approximating
rational functions. On every single interval 1= [b, c] S [0, 00) we use Pade
approximation with optimal choice of the center and the ratio r of the
degrees of the numerator- and denominator-polynomial. Hence as a
generalization of (2.6) for n =0, 1,2,... we consider the local error

with RlrnJ.n(x) defined by (Ll). Our aim is then to determine the asymptotic
behaviour (N -> 00) of the error
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The crucial point in the subsequent analysis is the following scaling property
(easily verified from the definition (3.1»

E(n + 1,1 +a) =e-aE(n + 1,1), a>O (3.3)

where I + a denotes the interval I translated by a. In [12) it has been shown
that for any family with property (3.3) the sequence {EN INE IN can be deter
mined as a fixed point of the following operator T defined on the class of
sequences e:= {eN}NEIN of numbers

where

N,?2
N= 1

(3.4)

inf {e-aev : e-aev= E(N - v, [0, a))l.
O<a<co

l<;v<;N-l

(3.5)

The application of the operator T to a sequence {evl of (global) errors may
be interpreted as the attempt to improve the error eN by adding a new subin
terval with N v parameters in an optimal way to the partition with v
parameters and error ev'

A further important property established in [12) is the monotonicity of T,
i.e., for any two sequences e<l) ~ e(2) (to be understood component-wise),
there holds

(3.6)

Finally, we need

LEMMA 6. Define the operator T as in (3.4), (3.5) but with E(n, [0, a])
replaced by E(n, [0, a)) where KE(n, [0, a]) ~ E(n, [0, a)) for some constant
K > 0. Then, if a sequence eis a fixed point of T, the sequence e with
ev := Kev is a fixed point of the operator T.

This fact has not been explicitly formulated in [12) but follows from the
easily verified inequality §N'? eN for ev defined as above. Now we prove

LEMMA 7. Define f as in Lemma 7 with

E(n, [0, a]) := min(R, G(aln)Y (3.7)

where R and the function G(x) are introduced in Theorem 4. For Y? 0
den?te by if< Y) the sequence of numbers ey.n := e yn. Then if< Y) is a fixed point
of T for any y,? Yo' where Yo 1.88716923... is defined by

(3.8)
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Proof In view of the definition

f y N:= inf {e-aeyv: e-aeyv= P(N - v, [0, a])}
, O<a<oo • •

l<;;v<;;N-I

we have (N - v = n, a' := aln)

fy,N = lim {e(y-a')n: (y' - a) n = yN +n log mineR, G(a'))}. (3.9)
e N O<a'<oo

y. 1 <;;n<;;N-I

The constraint here is equivalent to

-(N - n) yin = a' + log mineR, G(a')). (3.10)

Since the left-hand side of (3.10) is always ~O and since G is a monotone
increasing function this means that a' ~ Yo where

0= Yo + log mineR, G(yo)).

However,

G(yo) = e- Yo = (6.600657267... )-1 <R -I = (4.0982... ) -I. (3.11)

(We remark that by (2.8) Yo can be easily computed successively from the
equations I = F(yo - z, 1), eZF(z, 1) = e- (Yo- z) • F(yo - z, 1) in the unknowns
Yo - z and z.)

The restriction a' ~ Yo shows ~ow that y;;:: Yo in (3.9) implies fy,N;;:: ey.N.
But by definition (3.4), (3.5) for T this is just the assertion of the lemma. I

The main result of this section is now easily established:

THEOREM 5. The error EN of optimal piecewise Pade-approximation of
e- X on [0, (0) defined by (3.1), (3.2) can be estimated by

(3.12)

with positive constants C3 , C4 of size O(N3 1og N). It can be obtained (up to
these constants) by approximating e- x on [0, YoN] by the Pade-approximant
of Theorem 4 and on [YoN, (0) by the zero function.

Proof From Lemmas 6 and 7 we conclude that

K ~ min(l, a) (3.13)

is a fixed point of the operator T defined by (3.1), (3.2) and (3.4), (3.5).
Here, we have used estimate (2.9) of Theorem 4 and assumed that K is a
constant not depending on a. But this assumption is justified in view of the
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fact that for any fixed point of t the feasible a may be bounded from below
by a ~ Yo n (see (3.9), (3.10».

On the other hand, from the monotonicity of T we know (cf. [12,
Corollary 3]) that any fixed point e of T with en <CsR n<E(n, [0, 00»
(with Cs according to Theorem 4) gives a lower bound for EN' Since this
condition for en is satisfied by (3.11) and (3.13) the lower estimate of the
theorem is established.

Concerning the upper bound we consider the special approximation on the
intervals [0, YoN] and [yoN, 00) as described above. By Theorem 4 we
immediately verify that this yields the estimate

EN ~ C4 max(G(yo), e- yot

where C4 has size O(N3 log N). I
Theorem 5 shows that passing from global Pade-approximants to Pade

splines we can improve the rate of approximation of e- X on [0, 00) from
R> 1/(4.1) (see (2.9» to G(yo) < 1/(6.6) (see (3.11». If one uses best
rational approximation instead, a further improvement should be possible
with a better rate, than that of best rational approximation on [0, 00) which
is still unknown. We cannot hope to achieve this by using a piecewise
rational approximation which employs Pade-approximation on the initial
interval [0, a]. This can be seen by the same arguments as above since
applying repeatedly the operator T to such an initial approximation would
again lead to' the lower bound of Theorem 5.

From the above analysis it is also clear that we have to study the local
error on intervals of the form [0, an] (n ~ 00 and a fixed) so that the sharp
estimates of [2,5] cannot be used for this purpose. Better estimates than for
classical Pade-approximation might be obtained by using Pade-Laguerre
approximation for which explicit formulae have been obtained by Nemeth
[6]. They are of the same nature as (1.1), (1.2) but involve complex
integrals. An asymptotic estimate for the pointwise error is then derived as in
Theorems I and 2 of Section 1. However, the "methode du col" has then to
be replaced by its modification to the complex case known as the "saddle
point method." From the formulas in [6] one can easily derive that the error
for the (m, n) Laguerre-Pade-approximation has at least m +n + I zeros on
[0, (0). However, it is not clear which one of the m + n extrema of the error
is estimated in [6] where the method is applied only formally. In addition the
estimate in f6] becomes definitely wrong for general intervals fO,an], a> O.
The correct applications of the saddle-point method (cf. [9]) certainly still
requires much work.
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